Wednesday, May 30, 2018

Decontamination of Spiral Freezers


The biggest challenge in successfully cleaning spiral freezers is trying to reach all the surfaces.  Spiral freezers are constructed with minimal clearances, making it hard to use traditional cleaning techniques such as the spraying of liquid chemicals.  The interior is too tight to maneuver cleaning equipment properly and operate it effectively.  Cleaning every nook and cranny inside of a spiral freezer is a very difficult task when taking into consideration all of the internal components, all of the hard to reach crevices, the difficulty in maintaining the correct contact time of the chemical being used, and the difficulty in the agent reaching all surfaces.

Chlorine dioxide gas has been proven effective at eliminating listeria from within spiral and tunnel freezers. ClorDiSys’ chlorine dioxide gas is made using a proprietary generation method and is registered with the US EPA as a sterilant providing a 6-log (99.9999%) reduction of all viruses, bacteria, fungi, molds and spores. As a true gas, chlorine dioxide naturally fills the spiral freezer evenly and completely, and with a molecule size smaller than the smallest organism, there’s no surface that is safe for pathogens to hide. Gaseous CD is the only decontaminant that penetrates water and decontaminates both the water and the surface beneath, which is important for spiral freezers that typically have condensation issues.

One facility which produced frozen sausages had a persistent listeria problem, resulting in consistent positive swabs. After one treatment with chlorine dioxide gas, the facility was able to eclipse 16 weeks without a single positive swab after testing 2-3 times per day. CD gas decontamination has been written into a quarterly preventive maintenance schedule.

Attend our Food Facility Decontamination Services webinar on June 7th to learn more or stop by Booth #10 at the North American Food Safety and Quality 2018 on June 5-6th to further discuss.

Tuesday, May 22, 2018

How Ultraviolet Light Help Prevent The Spread Of Ebola


While combating the highly infectious Ebola virus disease (EVD) outbreak in West Africa, aid workers and other visitors have been inadvertently exposed and contracting the virus. In 2014, a number of infected individuals were evacuated from Africa and returned to the United States for treatment. The Nebraska Biocontainment Unit (NBU) was one of the several receiving hospitals for these patients. The NBU and Omaha Fire Department’s emergency medical services coordinated patient transportation from the airport to the high-level isolation unit. Following patient admission into this unit, biocontainment staff members relocated the ambulance to an isolated, controlled-access area to be decontaminated. All surfaces in the cab and patient compartment were thoroughly wiped with bleach solution. Then, as a final disinfection step, the back of the ambulance was exposed to ultraviolet light.


Ultraviolet light is a specific part of the electromagnetic spectrum of light that offers bactericidal effects. It is the wavelengths in the UV-C spectrum, which offer the greatest germicidal potential. UV-C provides a dry, chemical-free, and residue-free method of disinfection effective against bacteria, viruses, fungi and spores. For this reason, ultraviolet light disinfection was not only used in the ambulances, but as the final step in decontaminating medical equipment, patients’ rooms, and bathrooms after patients were discharged. Acknowledging the known limitations that UV-C only disinfects the areas light can reach, the Nebraska Biocontainment Unit used four ClorDiSys Torch systems in tandem to ensure the proper exposure was achieved to inactivate the Ebola virus.


Learn more about ClorDiSys Solutions’ Torch here.

Thursday, May 17, 2018

How Often You Should Schedule Preventative Decontamination

Over the past couple of years, we've noticed a shift within our decontamination services projects.  At first, all projects were in response to active contaminations.  More recently however, we've noticed a shift as more of our decontamination service projects have been scheduled as part of a preventive sanitation effort, aimed at providing a more thorough kill than traditional sanitation can achieve.  One of the more frequent questions we get when discussing preventive decontamination is, 'how often should we decontaminate?'  It's a great question, and its one that doesn't have a simple answer as every situation is different.

When discussing the frequency and scheduling of preventive decontamination, the best first step is to review your environmental monitoring data.  Sometimes, there's a trend within the data that can help guide the process along.  In these situations, we would propose to undercut that trend so that the decontamination takes place before the next positive "is expected."

Example:
A processing area shows positive environmental monitoring swabs approximately every 6-8 months. 

Proposed Preventive Schedule:
Decontamination every 5 months

For areas where there is no easy to determine a trend in positive environmental swabs, another approach must be taken.  In these situations, the following factors should be considered:


  • The environment itself (a room, spiral freezer, entire processing area, etc...)
  • The risk level of the product and environment (raw meat vs. canned foods vs. produce vs...)
  • Historical environmental monitoring data
  • Downtime / Availability of the space (24/7 production, 24/5 production, yearly shutdown, etc...)
We've seen preventive decontamination schedules ranging from daily (for the decontamination of brushes and dry cleaning tools within a Decon Chamber) to quarterly (Spiral Freezers and Aseptic Fill Rooms) to Annual (Processing Areas and Production Rooms).

If you're interested in learning more about Preventive Decontamination as a supplement to your sanitation program, contact us at 908-236-4100 or visit www.clordisys.com/foodsafetyapp

Tuesday, May 8, 2018

Chlorine Dioxide vs. Chlorine Dioxide: Choosing the Right Provider

ClorDiSys Solutions approaches decontamination differently than other chlorine dioxide gas companies. We strive for excellent process control, high quality, and outstanding safety. Our chlorine dioxide gas is registered with the US EPA as a sterilant. It is proven capable of providing a 6-log (99.9999% reduction) of all viruses, bacteria, fungi, molds and spores. Our chlorine dioxide gas is the only one registered at this highest antimicrobial level.

The ClorDiSys method of generating chlorine dioxide produces a 100% pure gas. Other methods of generating chlorine dioxide mix an acid and a base which forms a chlorine dioxide solution which is then off-gassed to fumigate a space. That generation method produces two acidic components, acidified sodium chlorite and chlorous acid, alongside chlorine dioxide which makes these methods more corrosive. Our method of generating pure chlorine dioxide gas is accomplished by passing a low concentration chlorine gas through a proprietary sodium chlorite cartridge to convert the chlorine gas into pure chlorine dioxide gas. This allows our process to be safe when decontaminating stainless steel, galvanized metals, anodized aluminum, epoxy surfaces, electronics, and the most common materials of construction. Typically, if water will not corrode an item, neither will our CD. ClorDiSys’ chlorine dioxide gas has been proven to the FDA to leave behind no measurable residue. Once the gas has been removed, the area is safe and does not require additional cleanup.

ClorDiSys uses a highly accurate UV-vis spectrophotometer to measure the concentration. Photometers are able to measure precise locations, such as hot spots, in order to provide greater confidence (and data for regulators) that those locations underwent a specific exposure dosage. Our Decon Service team measures the concentration of chlorine dioxide gas throughout the entire process at multiple locations in order to ensure that all locations reach the proper dosage necessary to achieve a 6-log sporicidal reduction. Other chlorine dioxide gas decontamination processes monitor one location using a less accurate chemical sensor, making the process less repeatable and reliable.

Click here to learn more about our process or join us online May 15th at 1:00pm EST for CD Gas 101 webinar.