Thursday, July 25, 2019

Decontaminating Dry Processing Environments


This week, the International Association for Food Protection's (IAFP) annual meeting took place in Louisville, KY.  We had the privilege of participating in a session entitled, “Challenges of Sanitation in Dry Processing Environments: What are the Evolving Methods?” Alongside a group of our industry peers, we discussed how dry gasses can be used to complement your sanitation process. During the presentation, we described how “harborage locations” within a production environment only exist when your sanitation method is ineffective at penetrating the cracks and crevices within a facility.  Gases naturally fill up the volume they are contained within evenly, meaning that there are no surfaces which go uncontacted.  

Chlorine dioxide gas and ozone gas are two residue-free, dry gas sanitation methods that are capable of penetrating into crevices further than pathogens can hide.  This is because they have a smaller molecule size than the smallest virus, measuring in between 0.124-0.127 nm. Ozone has difficulty in large environments however, as it breaks down rather quickly with a half-life of about 30 minutes.  This makes it difficult to accumulate the proper dosage at locations further from the ozone generator as treatment times typically range from 4-36 hours.  Chlorine dioxide has a half-life much longer than the treatment time, meaning that there is no natural loss in concentration during the decontamination itself.

Gas decontamination offers a fundamentally better chance of contacting pathogens throughout a facility, which is the biggest challenge to traditional sanitation methods.  Using chlorine dioxide gas as a supplement to your traditional sanitation method in order to provide a periodic “deep clean” will help establish a true “clean break” within your facility.  Whether treating your entire production facility, a single piece of equipment, or the inside of equipment and its piping / PC lines, chlorine dioxide gas is extremely well suited to eliminate pathogens wherever they reside.